

Metallurgical Drilling at Hillgrove Gold-Antimony Project

Highlights

- Auger drilling of the historic Tailings Storage Facility (TSF1) for metallurgy testwork has been completed
- Detailed, past production records indicates excellent tailings grade of 1.34g/t Au plus significant antimony and tungsten
- Samples are undergoing metallurgical testwork to assess the recovery potential of gold, antimony and tungsten
- Antimony and tungsten are listed as critical minerals and are currently at near record high prices

Larvotto Resources Limited (**ASX: LRV**, **Germany: K6X**, '**Larvotto**' or 'the **Company**') has completed an auger drilling program for metallurgical testwork on the historic tailings facility (TSF1) at the Company's newly acquired, 100%-owned, Hillgrove Gold-Antimony Project (Hillgrove) near Armidale in New South Wales.

Managing Director, Ron Heeks commented,

"We are delighted to have completed the first drilling at our newly acquired Hillgrove Gold-Antimony project so swiftly. Hillgrove has historically focussed on extracting antimony, therefore a considerable amount of gold was not extracted from the processed ore (as is highlighted by production records). No tungsten was extracted and went straight to the tailings. The drill program undertaken was conducted to assess the metallurgical viability of retreating the 1.4-million-ton of historic tailings given the high gold, antimony and tungsten values it contains. The Hillgrove Mineral Resource¹ contains 1.4Moz AuEq at 6.1g/t AuEq. Provided metallurgical results are positive, the potential exists to add significant further resource gold ounces with antimony and tungsten credits from the old tailings storage that was used from 1982 up until 2002. Larvotto has the potential to treat these tailings independently or combined with future underground feed to the processing plant onsite.

Hillgrove Gold-Antimony Project

Hillgrove is located 23 kilometres east of Armidale, NSW. The 254km² project contains four exploration leases and 48 granted mining leases and contains resources of 1.4Moz Mineral Resources at 6.1g/t AuEq (Figure 1).

The current Mineral Resource places Hillgrove in the world top 10 antimony deposits, as well as containing high grade gold and significant tungsten. It is Australia's largest antimony deposit. Antimony and tungsten are considered critical minerals by multiple countries including the US, EU, China, and Australia. For the

¹ See ASX: LRV Announcement, 22 December 2023, Amended 1.4Moz 6.1g/t AuEq Hillgrove Project Acquired

years of production from 1982 most processing focus was on antimony and not gold. Therefore, a considerable amount of gold went to the tailings dam. This is indicated by the analysis of the daily processing records that confirm the average grade of 1.34g/t Au was deposited in the tailing dam TSF1.

Tungsten mineralisation is associated with the gold and antimony at Hillgrove and in areas can be found at high grades. The tungsten mineralisation has never been fully assessed and has been mined and processed as a by-product with no regard to extraction. Tungsten mined at Hillgrove has therefore essentially gone direct to the tailings dam. With current tungsten prices at over A\$45,000/t, Larvotto will assess the grade and potential to recover the tungsten from the tailings in addition to the gold and antimony.

The assessment of antimony in the tailings will also link with a review of historical tungsten sampling to determine if it can be incorporated into the overall resource model and extraction and production profile. The previous operators of the plant had begun to install, but never completed, a tungsten hydrometallurgical extraction circuit as it had been identified tungsten was a potential valuable by-product.

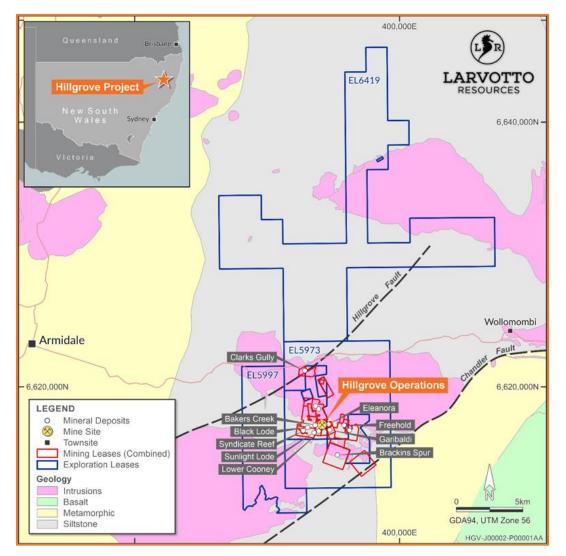


Figure 1 Hillgrove Project Location Map

Historically, Hillgrove has produced over 750,000oz of gold and 40,000t of antimony and there are currently multiple high-grade drill targets outside of the current Mineral Resource which have been identified for further near-term drilling including Bakers Creek & TSF1. Lode locations are displayed above in Figure 1.

In 2013, Hillgrove Mines carried out a diamond drilling program on TSF1 to confirm historical processing grades and undertake recovery testwork. These in-house results suggested viable recoveries of gold and

antimony could be achieved. Larvotto has expanded on this program by carrying out an auger drill campaign to collect further grade and metallurgical information to a standard suitable to meet current reporting guidelines as well determine the optimal processing option. None of the tailings mineralisation is currently contained in the Hillgrove Mineral Resource. Figure 2 shows the auger drill rig used operating on the tailings dam. The drill hole locations from both drilling programs are detailed in Figure 3. Access to the dam for drilling was easy as the dam surface was covered by rock scats produced by processing to stabilise the top of the dam. The scats were not sampled as part of this program.

Figure 2 Auger Drilling on the Hillgrove Mines Historic Tailings Facility One

Tailing Storge Facilty (TSF1)

Commissioned in 1982, TSF1 is a New England Antimony Mines (NEAM) era tailings storage facility situated wholly on current mining leases. It covers 113,300m² and contains 1.4 million tonnes of tailings as confirmed by production records and survey.

The tailings in the dam come from a period where NEAM primarily focussed on antimony production rather than gold. Previous drill sampling of the tailings storage facility has identified that it contains a considerable amount of gold as results from drilling 2013 provided in Figure 3 highlight.

Hillgrove Mines has detailed daily production figures from all processing operations over the life of the project and as part of these production figures has very detailed records from daily monitoring of the tailings tonnes and grades deposited into the dam. The overall grade of the dam is known from these daily records to be 1.34g/t Au. This grade was also supported by the 2013 drilling. Drilling by Larvotto, although mainly for metallurgical sample collection, is expected to support the historical grade calculation.

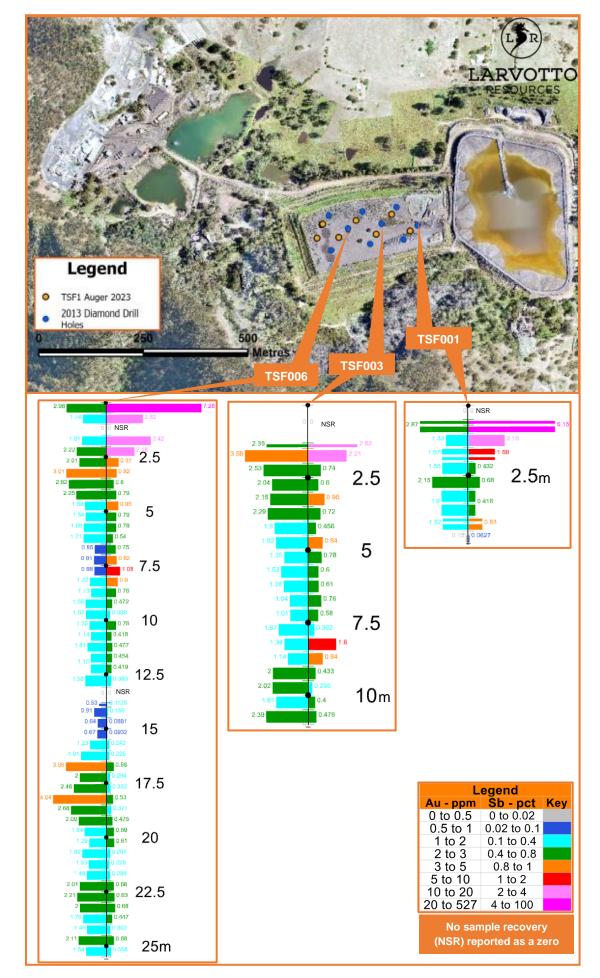


Figure 3: TSF1 diamond (2013) & auger (2023) drilling location plan with historic drill hole assay data

Currently, TSF1 does not contribute to the overall Hillgrove Mineral Resource of 1.4Moz AuEq at 6.1g/t and, if metallurgically viable, has the potential to significantly expand the Hillgrove Mineral Resource portfolio.

Samples collected from the drilling have been dispatched to Independent Metallurgical Laboratories in Perth, Western Australia to have testwork undertaken to determine if the remnant gold, antimony and tungsten can be viably recovered. If the tailings dam can be economically retreated, it will also assist with rehabilitation of the site as the material will be moved to a new larger facility located in a substantially better location for tailings storage. TSF1 is located approximately 500m from the current processing plant.

Analytical gold, antimony and tungsten grade results from the drilling will be available within weeks. Metallurgical recovery testwork is expected to take several months to complete.

Competent Persons Statements

The information in this presentation that relates to exploration results is based on information compiled by Mr Thomas Hancock, who is a Member of the Australasian Institute of Mining and Metallurgy and who is Senior Geologist of Larvotto Resources Limited.

Mr Hancock has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Hancock consents to the inclusion in the release of the matters based on his information in the form and context in which it appears. The Company is not aware of any new information or data that materially affects the information included in this Announcement. All material assumptions and technical parameters underpinning the estimates in the Announcements referred to, continue to apply and have not materially changed.

This announcement was authorised for release by the Board of Larvotto Resources Limited.

Reporting Confirmation

The information in this report that relates to exploration results is extracted from the Company's ASX announcements:

 ASX: LRV Announcement, 22 December 2023 - 1.4Moz @ 6.1g/t AuEq Gold-Antimony Hillgrove Project Acquired

The Company confirms that it is not aware of any new information or data that materially affects the information included within the original market announcements.

About Larvotto Resources Ltd

Larvotto Resources Limited (ASX:LRV) is actively advancing its portfolio of in-demand minerals projects including the 1.4Moz AuEq high-grade Hillgrove Gold-Antimony Project in NSW, the large Mt Isa copper, gold, and cobalt project adjacent to Mt Isa townsite in Queensland, the Eyre multi-metals and lithium project located 30km east of Norseman in Western Australia and an exciting gold exploration project at Ohakuri in New Zealand's North Island. Larvotto's board has a mix of experienced explorers and corporate financiers to progress its projects. Visit www.larvottoresources.com for further information.

Forward Looking Statements

Any forward-looking information contained in this news release is made as of the date of this news release. Except as required under applicable securities legislation, Larvotto does not intend, and does not assume any obligation, to update this forward-looking information. Any forward-looking information contained in this news release is based on numerous assumptions and is subject to all of the risks and uncertainties inherent in the Company's business, including risks inherent in resource exploration and development. As a result, actual results may vary materially from those described in the forward-looking information. Readers are cautioned not to place undue reliance on forward looking information due to the inherent uncertainty thereof.

LARVOTTO RESOURCES LIMITED

ABN 16 645 596 238 ASX:LRV | TGAT:K6X Unit 6 / 105 Broadway, Nedlands, WA 6009 PO Box 496, Claremont, WA 6910 +61 (8) 6373 0112 info@larvottoresources.com www.larvottoresources.com FOLLOW US

DIRECTORS

Mr Mark Tomlinson Non-Executive Chairman Mr Ron Heeks Managing Director Ms Anna Nahajski-Staples Non-Executive Director

Mr Nicholas Longmire Company Secretary

PROJECTS

Hillgrove Au, Sb Hillgrove, NSW

Mt Isa Au, Cu, Co Mt Isa, QLD

Eyre Ni, Au, PGE, Li Norseman, WA

Ohakuri Au New Zealand

CONTACT

For further information, please contact:

Mr Ron Heeks

Managing Director +61 (8) 6373 0112 info@larvottoresources.com

Andrew Willis / Ben Creagh

Media and investor enquiries awillis@nwrcommunications.com.au benc@nwrcommunications.com.au

Appendix A

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 All holes were diamond drilled with core collected and placed in trays. The core was cut in half and ½ was sampled on 0.5m intervals, bagged and sent to ALS Brisbane. The other ½ was bagged and sent to Perth for metallurgical testing. The core was cut using an automatic Almonte Saw which is industry standard equipment.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details.	 Drill type was HQ diamond core. HQ was used to get a larger sample for metallurgical testwork. The core was not orientated (not necessary in non-structural tailings).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 A number of conventional drilling techniques were trialed in the dam. Core was recovered by pushing the rods down with no bit to allow the tailings material to extrude into the rods. This method produced the best recovery and the most representative sample. All core was placed in trays and photographed prior to sampling. No sample bias was encountered due to all material captured in the rods. Some core loss was encountered where the material was too dry to remain in the tube. 87% sample recovery was achieved for the program.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 All core was logged. No geotechnical logging was conducted due to the unconsolidated nature of the tailings. The core was logged on a 0.5m basis.

Criteria	JORC Code explanation	Commentary
		All core was photographed.
Sub-sampling techniques and sample preparation	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Competent core was cut with the Almonte saw into halves. ½ core was sampled for assaying and ½ core was sampled for metallurgical work. Wet / moist core was cut with a spatula. Due to the homogenous nature of the material, there was no bias in the way the samples were cut. Samples were collected on 1/2m basis which is considered appropriate to the overall grain size of the material. Particle sizing testwork formed part of the metallurgical program.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All samples were assayed using the standard protocol that was developed over many years of production at Hillgrove and communication with the lab. Samples were weighed, dried and pulverised to 85% passing 75 microns. Samples were digested with a multi-acid (GEO-4Acid) and an ICP analysis (ME-MS61). Gold was determined by using a 50g charge fire assay with AAS finish. Samples which recorded antimony assays > 5000ppm reverted to an XRF determination (ME-XRF15c). The assay procedure is a 4 acid digestion and is a total technique. ALS (analytical laboratory) completed their own internal blanks and standards. No blanks or standards were used in this program.
Samples	 The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Significant assays were verified by both the Geology Manager and Senior Geologist onsite.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 All drill hole collar positions were surveyed by a licensed contract surveyor using a differential global positioning system (DGPS) tied into known survey points. No downhole camera surveys were taken due to the relative shallow depth of the holes. It was assumed that the holes would not deviate a great distance from the vertical over short hole lengths.

Criteria	JORC Code explanation	Commentary
		 The collar coordinates were based on the GDA94 zone 56 grid, which is used for all data on the Hillgrove site. Accurate topographic contours (0.5m intervals) exist over the area covered by the TSF1 dam.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Holes were drilled on a nominal, average, staggered 60m pattern which was deemed adequate given the homogenous nature of the tailings. Samples were composited over 1m intervals. 219 samples were taken.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 No core was orientated due to the lack of structure in the tailings. It was assumed that the dam was a laminated distribution of unconsolidated material. Vertical drilling was assumed to be at 90 degrees to the stratified layers in the dam and therefore no sampling bias was expected.
Sample security	• The measures taken to ensure sample security.	 Samples were bagged by Hillgrove Mine exploration staff and transported in sealed poly weave bags with individual sample numbers to the Brisbane ALS laboratory via independent freight contractors.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No independent audits or reviews have been conducted to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 TSF1 is covered by ML0391 and ML0219, both of which were renewed in 2020. All statutory requirements have been met for these leases and there are no impediments
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• There have been numerous exploration programs conducted by various companies at Hillgrove. Where possible, available data has been reviewed and incorporated into the onsite database. Hillgrove Mines has no reason to doubt the accuracy of any of the previous work conducted onsite.
Geology	Deposit type, geological setting and style of mineralization.	 Doesn't apply to this tailings dam.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole	 A plan showing the collar locations with hole depth is included in the report.
Data aggregation methods	 length. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	All sample intervals were the same length.
Relationship between mineralization widths and	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	 All downhole intervals were assumed to be true thickness due to the laminated geometry of the tailings emplacement. Raw data exhibited a uniform distribution throughout the dam.

Criteria	JORC Code explanation	Commentary
intercept lengths		
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Diagrams are provided in the body of the report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Results.	• The reporting is considered to be balanced taking into account this is a tailings dam and has a history of production details.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Future work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	• Undertake metallurgical testwork in an effort to conversion to a resource.

Appendix B Drill Hole Collar Details

Project	Hole ID	Туре	Tenement	Easting (MGA94_56)	Northing (MGA94_56)	RL	Azimuth	Dip	Depth
	TSF001	DDH	ML219	395237.908	6616784.994	1995.115	0	-90	4.95
	TSF002	DDH	ML219	395187.729	6616828.812	1995.538	0	-90	9
	TSF003	DDH	ML219	395154.059	6616789.259	1994.691	0	-90	11.1
	TSF004	DDH	ML219	395204.565	6616751.357	1995.511	0	-90	7.5
TSF1	TSF005	DDH	ML219	395108.549	6616818.791	1995.48	0	-90	20.1
	TSF006	DDH	ML219	395074.091	6616778.251	1994.529	0	-90	25.6
	TSF007	DDH	ML391	395034.03	6616725.608	1995.235	0	-90	23.9
	TSF008	DDH	ML219	395127.189	6616740.759	1995.35	0	-90	18.7
	TSF009	DDH	ML391	395027.986	6616808.627	1995.488	0	-90	17.3

Appendix C Drill Hole Assays

Hole ID	From	То	Interval	Au	Sb ppm	Sb pct
TSF001	0.5	1	0.5	2.87	10000	5.15
TSF001	1	1.5	0.5	1.33	10000	2.16
TSF001	1.5	2	0.5	1.57	10000	1.58
TSF001	2	2.5	0.5	1.55	4320	0.432
TSF001	2.5	3	0.5	2.15	6660	0.68
TSF001	3	3.5	0.5	1.6	4160	0.416
TSF001	3.5	4	0.5	1.6	4160	0.416
TSF001	4	4.5	0.5	1.52	7750	0.83
TSF001	4.5	4.95	0.45	0.15	627	0.0627
TSF002	1	1.5	0.5	1.31	6740	1.18
TSF002	1.5	2	0.5	1.39	6480	1.27
TSF002	3	3.5	0.5	1.58	3550	0.355
TSF002	3.5	4	0.5	1.77	3700	0.37
TSF002	4	4.5	0.5	1.2	6340	0.95
TSF002	4.5	5	0.5	1.01	9700	0.99
TSF002	5	5.5	0.5	0.95	7810	0.81
TSF002	5.5	6	0.5	1.09	5780	0.59
TSF002	6	6.5	0.5	0.98	7990	0.81
TSF002	6.5	7	0.5	1.28	5870	0.63
TSF002	7	7.5	0.5	1.15	7520	0.82
TSF002	7.5	8	0.5	1.69	10000	1.86
TSF002	8	8.5	0.5	0.63	8790	0.93
TSF002	8.5	9	0.5	0.7	4440	0.444
TSF003	1.3	1.5	0.2	2.35	10000	2.82
TSF003	1.5	2	0.5	3.58	10000	2.21
TSF003	2	2.5	0.5	2.53	5940	0.74
TSF003	2.5	3	0.5	2.04	5160	0.6
TSF003	3	3.5	0.5	2.15	7730	0.95
TSF003	3.5	4	0.5	2.29	6000	0.72
TSF003	4	4.5	0.5	1.9	4560	0.456
TSF003	4.5	5	0.5	1.82	7800	0.84
TSF003	5	5.5	0.5	1.35	7510	0.78
TSF003	5.5	6	0.5	1.53	5210	0.6
TSF003	6	6.5	0.5	1.38	5650	0.61
TSF003	6.5	7	0.5	1.04	6860	0.76
TSF003	7	7.5	0.5	1.01	5220	0.58
TSF003	7.5	8	0.5	1.67	3620	0.362
TSF003	8	8.5	0.5	1.34	10000	1.6
TSF003	8.5	9	0.5	1.14	7560	0.84
TSF003	9	9.5	0.5	2	4330	0.433
TSF003	9.5	10	0.5	2.02	2360	0.236
TSF003	10	10.5	0.5	1.81	4000	0.4
TSF003	10.5	11	0.5	2.39	4760	0.476
TSF004	0.6	1	0.4	1.75	9870	2.09
TSF004	2.2	2.5	0.3	1.87	5580	0.67
TSF004	3.8	4.1	0.3	2.05	4500	0.45
TSF004	5.1	5.6	0.5	1.84	2020	0.202

Hole ID	From	То	Interval	Au	Sb ppm	Sb pct
TSF004	6.2	6.5	0.3	1.08	1250	0.125
TSF004	6.5	7	0.5	1.28	1130	0.113
TSF004	7	7.6	0.6	2.17	2580	0.258
TSF005	0	0.5	0.5	1.36	7470	1.44
TSF005	0.5	1	0.5	2.05	10000	1.83
TSF005	2	2.5	0.5	1.34	3470	0.347
TSF005	3.7	4.1	0.4	1.65	10000	1.88
TSF005	5	5.5	0.5	1.7	5620	0.61
TSF005	5.5	6	0.5	1.21	8470	0.9
TSF005	6	6.5	0.5	1	7260	0.77
TSF005	6.5	7	0.5	0.97	9150	0.99
TSF005	7	7.5	0.5	1.14	6730	0.83
TSF005	7.5	8	0.5	1.13	7250	0.74
TSF005	8	8.6	0.6	1.05	6080	0.63
TSF005	9	9.5	0.5	1.01	6570	0.76
TSF005	9.5	10	0.5	1.86	1320	0.132
TSF005	10	10.5	0.5	1.2	4810	0.481
TSF005	10.5	10.0	0.5	1.2	5430	0.63
TSF005	11	11.6	0.6	2.03	4680	0.468
TSF005	12	11.0	0.5	1.58	4700	0.400
TSF005	12.5	12.3	0.6	1.86	3180	0.47
TSF005	12.5	15	0.0	1.63	1070	0.318
TSF005	14.0	15.5	0.4	0.76	763	0.0763
TSF005	15.5	16	0.5	0.73	685	0.0685
TSF005	15.5	16.5	0.5	1.4	1695	0.0685
		10.5				
TSF005	16.5		0.5	1.53	1550	0.155
TSF005	17	17.5	0.5	2.27	3260	0.326
TSF005	17.5	18	0.5	2.23	1785	0.1785
TSF005	18	18.5	0.5	1.94	1730	0.173
TSF005	18.5	19	0.5	1.91	2290	0.229
TSF005	19	19.5	0.5	1.91	2950	0.295
TSF005	19.5	20	0.5	1.91	3120	0.312
TSF006	0	0.5	0.5	2.98	10000	7.28
TSF006	0.5	1	0.5	1.74	10000	2.82
TSF006	1.5	2	0.5	1.81	10000	3.42
TSF006	2	2.5	0.5	2.22	8010	2.18
TSF006	2.5	3	0.5	2.01	7140	0.97
TSF006	3	3.5	0.5	3.01	7180	0.82
TSF006	3.5	4	0.5	2.82	5940	0.6
TSF006	4	4.5	0.5	2.25	7590	0.79
TSF006	4.5	5	0.5	1.59	8970	0.95
TSF006	5	5.5	0.5	1.54	7440	0.79
TSF006	5.5	6	0.5	1.68	7340	0.78
TSF006	6	6.5	0.5	1.71	5010	0.54
TSF006	6.5	7	0.5	0.85	6690	0.75
TSF006	7	7.5	0.5	0.91	6820	0.82
TSF006	7.5	8	0.5	0.88	8300	1.08
TSF006	8	8.5	0.5	1.22	8140	0.9
TSF006	8.5	9	0.5	1.13	5870	0.76

Hole ID	From	То	Interval	Au	Sb ppm	Sb pct
TSF006	9	9.5	0.5	1.55	4720	0.472
TSF006	9.5	10	0.5	1.52	3080	0.308
TSF006	10	10.5	0.5	1.25	6780	0.76
TSF006	10.5	11	0.5	1.14	4180	0.418
TSF006	11	11.5	0.5	1.41	4770	0.477
TSF006	11.5	12	0.5	1.15	4540	0.454
TSF006	12	12.5	0.5	1.15	4190	0.419
TSF006	12.5	13.1	0.6	1.58	3930	0.393
TSF006	13.8	14	0.2	0.53	1125	0.1125
TSF006	14	14.5	0.5	0.91	1560	0.156
TSF006	14.5	15	0.5	0.64	881	0.0881
TSF006	15	15.5	0.5	0.67	932	0.0932
TSF006	15.5	16	0.5	1.23	2420	0.242
TSF006	16	16.5	0.5	1.20	2250	0.242
TSF006	16.5	10.5	0.5	3.06	5680	0.225
TSF006	17	17.5	0.5	2	2940	0.38
TSF006	17	17.5	0.5	2.46	3320	0.294
TSF006	17.5	18.5	0.5	4.04	5130	0.53
TSF006	18.5	19	0.5	2.68	3710	0.371
TSF006	19	19.5	0.5	2.09	4750	0.475
TSF006	19.5	20	0.5	1.64	5080	0.59
TSF006	20	20.5	0.5	1.29	5190	0.61
TSF006	20.5	21	0.5	1.82	2970	0.297
TSF006	21	21.5	0.5	1.33	2290	0.229
TSF006	21.5	22	0.5	1.48	2860	0.286
TSF006	22	22.5	0.5	2.01	5230	0.58
TSF006	22.5	23	0.5	2.21	5770	0.63
TSF006	23	23.5	0.5	2	6130	0.68
TSF006	23.5	24	0.5	1.76	4470	0.447
TSF006	24	24.5	0.5	1.46	3020	0.302
TSF006	24.5	25	0.5	2.11	5610	0.58
TSF006	25	25.5	0.5	1.54	3580	0.358
TSF007	0.5	1	0.5	1.97	10000	3.78
TSF007	2	2.5	0.5	1.82	9640	2
TSF007	3.5	4	0.5	0.01	8410	0.97
TSF007	4	4.5	0.5	1.8	6810	0.68
TSF007	4.5	5	0.5	2.03	3540	0.354
TSF007	5	5.6	0.6	1.48	4750	0.475
TSF007	6.4	7	0.6	1.24	5700	0.64
TSF007	7	7.5	0.5	1.28	4330	0.433
TSF007	7.5	8	0.5	1.42	6080	0.68
TSF007	8	8.5	0.5	1.93	1835	0.1835
TSF007	8.5	9	0.5	1.48	5180	0.62
TSF007	9	9.5	0.5	1.53	3960	0.396
TSF007	9.5	10	0.5	1.27	5270	0.57
TSF007	10	10.5	0.5	1.38	5850	0.66
TSF007	10.5	11	0.5	1.28	3540	0.354
	11	11.5	0.5	1.28	4690	0.469
TSF007						

Hole ID	From	То	Interval	Au	Sb ppm	Sb pct
TSF007	12	12.5	0.5	1	2120	0.212
TSF007	12.5	13	0.5	0.74	2630	0.263
TSF007	13	13.5	0.5	1.12	2840	0.284
TSF007	13.5	14	0.5	1.14	3740	0.374
TSF007	14	14.5	0.5	0.72	4350	0.435
TSF007	14.5	15	0.5	1.56	3570	0.357
TSF007	15	15.5	0.5	0.82	3360	0.336
TSF007	15.5	16	0.5	2.07	2770	0.277
TSF007	16	16.5	0.5	1.15	2640	0.264
TSF007	16.5	17	0.5	1.94	2840	0.284
TSF007	17	17.5	0.5	1.49	2600	0.26
TSF007	17.5	18	0.5	2.27	3670	0.367
TSF007	18	18.5	0.5	2.1	2730	0.273
TSF007	18.5	19	0.5	2.34	3020	0.302
TSF007	10.0	19.5	0.5	2.04	3010	0.301
TSF007	19.5	20	0.5	2.56	3840	0.384
TSF007	20	20.5	0.5	1.88	2730	0.304
TSF007	20.5	20.5	0.5	2.21	3690	0.369
TSF007	20.0	21.5	0.5	2.03	3330	0.333
TSF007	21.5	21.5	0.5	1.87	3150	0.335
TSF007	21.5	22.5	0.5	2.08	3060	0.315
	22.5	22.5	0.5			0.306
TSF007				1.75	2500	
TSF007	23	23.6	0.6	1.62	2860	0.286
TSF008	2	2.5	0.5	1.23	7370	1.31
TSF008	3.7	4	0.3	1.35	4780	0.478
TSF008	4	4.1	0.1	2.32	5990	0.65
TSF008	5	5.6	0.6	1.33	2570	0.257
TSF008	6.2	6.5	0.3	1.1	4180	0.418
TSF008	6.5	7	0.5	1.41	2190	0.219
TSF008	7	7.5	0.5	1.32	2200	0.22
TSF008	7.5	8	0.5	1.55	2300	0.23
TSF008	8	8.5	0.5	2.02	2070	0.207
TSF008	8.5	9	0.5	1.21	2940	0.294
TSF008	9	9.5	0.5	1.66	1715	0.1715
TSF008	9.5	10	0.5	1.76	2480	0.248
TSF008	10	10.5	0.5	0.96	2160	0.216
TSF008	10.5	11	0.5	1.58	3360	0.336
TSF008	11	11.6	0.6	1.54	4620	0.462
TSF008	12.9	13.5	0.6	1.47	3230	0.323
TSF008	13.5	14	0.5	1.61	2110	0.211
TSF008	14	14.5	0.5	2.23	4330	0.433
TSF008	14.5	15	0.5	2.09	3960	0.396
TSF008	15	15.5	0.5	1.65	2830	0.283
TSF008	15.5	16	0.5	1.39	2920	0.292
TSF008	16	16.5	0.5	2.33	4590	0.459
TSF008	16.5	17	0.5	2.23	3620	0.362
TSF008	17	17.5	0.5	2.25	4580	0.458
TSF008	17.5	18	0.5	1.91	2940	0.294
	18	18.5	0.5	1.72	1930	0.193

Hole ID	From	То	Interval	Au	Sb ppm	Sb pct
TSF008	18.5	18.7	0.2	1.8	1900	0.19
TSF009	0.5	1	0.5	0.94	4670	0.467
TSF009	2.3	2.5	0.2	2.15	4540	0.454
TSF009	3.5	4.1	0.6	1.77	10000	2.49
TSF009	5.2	5.6	0.4	1.66	8910	0.98
TSF009	6.3	6.5	0.2	1.66	9800	1.1
TSF009	6.5	7	0.5	1.35	6990	0.78
TSF009	7	7.5	0.5	1.19	7280	0.97
TSF009	7.5	8	0.5	1.63	5480	0.59
TSF009	8	8.5	0.5	1.43	5950	0.64
TSF009	8.5	9	0.5	1.68	6200	0.73
TSF009	9	9.5	0.5	1.49	3200	0.32
TSF009	9.5	10.1	0.6	1.3	3440	0.344
TSF009	10.8	11	0.2	1.58	7110	0.76
TSF009	11	11.5	0.5	1.16	4640	0.464
TSF009	11.5	12	0.5	1.19	2630	0.263
TSF009	12	12.5	0.5	1.59	6670	0.74
TSF009	12.5	13	0.5	1.52	1710	0.171
TSF009	13	13.5	0.5	0.56	446	0.0446
TSF009	13.5	14	0.5	0.56	544	0.0544
TSF009	14	14.5	0.5	0.55	1265	0.1265
TSF009	14.5	15	0.5	0.79	580	0.058
TSF009	15	15.5	0.5	1.07	730	0.073
TSF009	15.5	16	0.5	1.82	1065	0.1065
TSF009	16	16.5	0.5	1.63	1720	0.172
TSF009	16.5	17	0.5	2.34	2650	0.265
TSF009	17	17.3	0.3	1.31	904	0.0904